海天精工机床有限公司 海天精工博客

数控机床的验收

一般分两个阶段进行验收。  1.预验收  目的是为了检查、验证机床能否满足用户的加工质量及生产率,检查供应商提供的资料、备件。供应商只有在机床通过正常运行试切并经检验生产合格加工件后,才能进行预验收。  2.最终验收  根据验收标准,测定合格证上所提供的各项技术指标,验收工作分以下几步:  (1)开箱检验;  (2)外观检查;  (3)机床性能及精工功能的验收;  (4)精工机床精度的验收(包括位置精度和工作精度)。  在验收机床几何精度时,在机床精调后一次完成,不允许调整一项检测一项。位置精度检验要依据相应的精度验收标准进行。机床的工作精度是一项综合精度,它不仅反映机床的几何精度和位置精度,同时还包括试件的材料、环境温度、刀具性能以及切削条件等各种因素造成的误差。  在验收精工机床时,加强对以上几方面的检验对设备管理工作非常有益,并可减少不必要损失。

加工中心多坐标铣削加工刀具轨迹生成

削加工刀具轨迹生成相关内容概述 多坐标精工铣削的加工对象,多坐标精工铣削加工可以解决任何复杂曲面零件的加工问题。根据零件的形状特征进行 分类,可以归纳为如下几种加工对象(或加工特征):多坐标点位加工、空间曲线加工、曲 面区域加工、组合曲面加工、曲面交线区域加工、曲面间过渡区域加工、裁剪曲面加工、复杂多曲面加工、曲面型腔加工、曲面通道加工。 刀具轨迹生成方法 —种较好的刀具轨迹生成方法,不仅应该满足计算速度快、占用计算机内存少的要求,更重要的是要满足切削行距分布均勻、加工误差小、走刀步长分布合理、加工效率高等要求。目前,比较常用的刀具轨迹生成方法主要有如下几种。 参数线法——适用于曲面区域和组合曲面的加工编程。 截平面法——适用于曲面区域、组合曲面、复杂多曲面和曲面型腔的加工编程。 回转截面法一适用于曲面区域、组合曲面、复杂多曲面和曲面型腔的加工编程。 投影法一适用于有干涉面存在的复杂多曲面和曲面型腔的加工编程。 三坐标球形刀多面体曲面加工方法一适用于三角域曲面的加工编程。 与刀具轨迹生成有关的几个基本概念切触点(cutting contact point)指刀具在加工过程中与被加工零件曲面的理论接触点。对于曲面加工,不论采用什么刀具,从几何学的角度来看,刀具与加工曲面的接触关 系均为点接触。切触点曲线(cutting contact curve)指刀具在加工过程中由切触点构成的曲线。 切触点曲线是生成刀具轨迹的基本要素,既可以显式地定义在加工曲面上,如曲面的等参数线、二曲面的交线等,也可以隐式定义.使其满足一定约束条件,如约束刀具沿导动线运 动,而导动线的投影可以定义刀具在加工曲面上的切触点,还可以定义刀具中心轨迹,切触点曲线由刀具中心轨迹隐式定义。这就是说,切触点曲线可以是曲面上实在的曲线,也可以是对切触点的约束条件所隐含的“虚拟”曲线。 刀位点数据(cutter location data,简称为CLData) 指准确确定刀具在加工过程 中的每一位置所需的数据。一般来说,刀具在工件坐标系中的准确位置可以用刀具中心点和刀轴矢量来进行推述,其中刀具中心点可以是刀心点,也可以是刀尖点,视具体情况而定。 刀具轨迹曲线指在加工过程中由刀位点构成的曲线,曲线上的每一点包含一个刀 轴矢量。刀具轨迹曲线一般由切触点曲线定义刀具偏置计算得到,计算结果存放于刀位文件 (CLData file)之中。 导动规则指曲面上切触点曲线的生成方法(如参数线法、截平面法)及一些有关 加工精度的参数,如步长、行距、两切削行间的残余高度、曲面加工的盈余容差(out tol-96erance)和过切容差(inner tolerance)等。刀具偏置(tool offset)指由切触点生成刀位点的计算过程。4.曲面加工刀具轨迹生成计算过程由以上定义,可以将曲面加工刀具轨迹的计算过程简略地表述为:给出一张或多张待加 工曲面(零件面),按导动规则约束生成切触点曲线,由切触点曲线按某种刀具偏置计算方法生成刀具轨迹曲线。由于-•般的精工系统有线性、圆弧等少数几种插补功能,所以一般需 将切触点曲线和刀具轨迹曲线按点串方式给出,并保证加工精度。在个别情况下也有例外, 如用球形刀三坐标加工比较光顺的曲面时,可以直接根据曲面计算得到其等距面,刀具轨迹曲线完全由等距面确定。这时切触点曲线的定义和刀具偏置计算融合在等距面的构造过程中,导动规则约束了等距面的离散,即刀位点的生成过程。(二)多坐标铣削加工刀具轨迹生成1.参数线轨迹生成法曲面参数线加工方法是多坐标精工加工中生成刀具轨迹的主要方法,特点是切削行 沿曲面的参数线分布,即切削行沿u线或v线分布,适用于网格比较规整的参数曲面的加工。基于曲面参数线加工的刀具轨迹计算方法的基本思想是利用Bezier曲线曲面的细分特性,将加工表面沿参数线方向进行细分,生成的点位作为加工时刀具与曲面的切触点。因此,曲面参数线加工方法也称为Bezier曲线离散算法。Bezier曲线离散算法按照离散方式可分为四叉离散算法和二叉离散算法。由于前者占用 的存储空间大,因此在刀具轨迹的计算中一般采用二叉离散算法。在加工中,刀具的运动分为切削行的走刀和切削行的进给两种运动。刀具沿切削行 走刀所覆盖的一个带状曲面区域,称为加工带。二叉离散过程首先沿切削行的行进给方向对曲面进行离散,得到加工带,然后在加工带上沿走刀方向对加工带进行离散,得到切削行。二叉离散算法要求确定一个参数线方向为走刀方向,假定为u参数曲线方向,相应的另 一参数曲线v方向即为切削行的行进给方向,然后根据允许的残余高度计算加工带的宽度; 并以此为基础,根据v参数曲线的弧长计算刀具沿v参数曲线的走刀次数(即加工带的数 量);加工带在v参数曲线方向上按等参数步长(或局部按等参数步长)分布。球形刀与环 行刀加工带宽的计算方法不同。基于参数线加工的刀具轨迹计算方法有多种,比较成熟的有等参数步长法、参数筛选 法、局部等参数步长法、参数线的差分箅法及参数线的对分箅法等,等参数步长法最简单的曲线离散算法是等参数步长法,即在整条参数线上按等参 数步长计算点位。参数步长和曲面加工误差没有一定关系,为了满足加工精度,通常步长的取值偏于保守且凭经验。这样计算的点位信息比较多。由于点位信息按等参数步长计算,没有用曲面的曲率来估计步长,因此,等参数步长法没有考虑曲面的局部平坦性。但这种方法计算简单,速度快,在刀位计算中常被采用。参数筛选法按等参数步长法计算离散点列,步长取值使离散点足够密,然后按曲面的曲率半径、加工误差从离散点列中筛选出点位信息。参数筛选法克服了等参数步长的缺点,但计算速度稍慢一些。这个方法的优点是计算的点位信息比较合理且具有一定的通 用性。局部等参数步长法在实际应用中,也常采用局部等参数步长离散算法:即加工带在v参数曲线方向上按局部等参数步长(曲面片内)分布;在走刀路线上,走刀步长根据容差进行计算,方法是在每一段U参数曲线上,按******曲率估计步长,然后按等参数步长进行 离散。采用局部等参数步长离散算法来求刀位点,不仅考虑了曲率的变化对走刀步长的影响,而且计算方法也比较简单。参数线的差分算法对于走刀路线上的一批等参数步长离散点的位置,采用向前差 分方法将大大加快计算速度。其基本的步骤如下。 求u线方程。 计算插值点的差分公式。参数线的差分算法是效率较高的局部等参数步长离散算法, 在参数曲面加工的刀具轨迹计算中应用较为广泛。 参数线的对分算法参数线的对分算法是曲线离散算法的一种,即在曲线离散算法 中,在曲线段参数的中点将曲线离散一次,得到两个曲线段。参数线的对分算法适用于刀具轨迹的局部加密(在刀具轨迹的交互编辑中可用到)。4.投影法(图3-59)投影法加工的基本思想是使刀具沿一组事先 定义好的导动曲线运动,同时跟踪待加工表面的形状。导动曲线在待加工表面上的投影一般为切 ®3"58 触点轨迹,也可以是刀尖点轨迹。切触点轨迹适 合于曲面特征的加工,而对于有干涉面的场合, 限制刀心点更为有效。由于待加工表面上每一点的法矢均不相同,因此限制切触点轨迹不能 保证刀尖轨迹落在投影方向上,所以限制刀尖容易控制刀具的准确位置,可以保证在一些临界位置和其他曲面不发生干涉。导动曲线的定义依加工对象而定。对于曲面上要求精确成形的轮廓线,如曲面上的花纹、文字和图形,可以事先将轮廓线投影到工作平面上作为导动曲线。多个嵌套的内环与一个外环曲线作为导动曲线可用于限制曲面上的加工区域。对于曲面型腔的加工,便可采用平面型腔的加工方法:首先将型腔底面与边界曲面和岛屿边界曲面的交线投影到工作平面上,按平面型腔加工方法生成一组刀具轨迹,然后将该刀具轨迹投影到型腔曲面上,限制刀尖位置,便可生成曲面型腔型面的刀具轨迹。 投影法加工以其灵活且易于控制等特点在现代CAD/CAM系统中获得了广泛的应用, 常用来处理其他方法难以取得满意效果的组合曲面和曲面型腔的加工。

数控机床的基本组成

精工机床的基本组成包括加工程序载体、精工装置、伺服驱动装置、机床主体和其他辅助装置。下面分别对各组成部分的基本工作原理进行概要说明。 加工程序载体 精工机床工作时,不需要工人直接去操作机床,要对精工机床进行控制,必 须编制加工程序。零件加工程序中,包括机床上刀具和工件的相对运动轨迹、工艺参数(进给量主轴转速等)和辅助运动等。将零件加工程序用一定的格式和代码,存储在一种程序载体上,如穿孔纸带、盒式磁带、软磁盘等,通过精工机床的输入装置,将程序信息输入到CNC单元。 机床主体 机床主机是精工机床的主体。它包括床身、底座、立柱、横梁、滑座、工作台、主轴箱、进给机构、刀架及自动换刀装置等机械部件。它是在精工机床上自动地完成各种切削加工的机械部分。与传统的机床相比,精工机床主体具有如下结构特点:1)采用具有高刚度、高抗震性及较小热变形的机床新结构。通常用提高结构系统的静刚度、增加阻尼、调整结构件质量和固有频率等方法来提高机床主机的刚度和抗震性,使机床主体能适应精工机床连续自动地进行切削加工的需要。采取改善机床结构布局、减少发热、控制温升及采用热位移补偿等措施,可减少热变形对机床主机的影响。2)广泛采用高性能的主轴伺服驱动和进给伺服驱动装置,使精工机床的传动链缩短,简化了机床机械传动系统的结构。3)采用高传动效率、高精度、无间隙的传动装置和运动部件,如滚珠丝杠螺母副、塑料滑动导轨、直线滚动导轨、静压导轨等。精工装置 精工装置是精工机床的核心。现代精工装置均采用CNC(Computer Numerical Control)形式,这种CNC装置一般使用多个微处理器,以程序化的软件形式实现精工功能,因此又称软件精工(Software NC)。CNC系统是一种位置控制系统,它是根据输入数据插补出理想的运动轨迹,然后输出到执行部件加工出所需要的零件。因此,精工装置主要由输入、处理和输出三个基本部分构成。而所有这些工作都由计算机的系统程序进行合理地组织,使整个系统协调地进行工作。1)输入装置:将精工指令输入给精工装置,根据程序载体的不同,相应有不同的输入装置。主要有键盘输入、磁盘输入、CAD/CAM系统直接通信方式输入和连接上级计算机的DNC(直接精工)输入,现仍有不少系统还保留有光电阅读机的纸带输入形式。(1)纸带输入方式。可用纸带光电阅读机读入零件程序,直接控制机床运动,也可以将纸带内容读入存储器,用存储器中储存的零件程序控制机床运动。(2)MDI手动数据输入方式。操作者可利用操作面板上的键盘输入加工程序的指令,它适用于比较短的程序。在控制装置编辑状态(EDIT)下,用软件输入加工程序,并存入控制装置的存储器中,这种输入方法可重复使用程序。一般手工编程均采用这种方法。在具有会话编程功能的精工装置上,可按照显示器上提示的问题,选择不同的菜单,用人机对话的方法,输入有关的尺寸数字,就可自动生成加工程序。(3)采用DNC直接精工输入方式。把零件程序保存在上级计算机中,CNC系统一边加工一边接收来自计算机的后续程序段。DNC方式多用于采用CAD/CAM软件设计的复杂工件并直接生成零件程序的情况。2)信息处理:输入装置将加工信息传给CNC单元,编译成计算机能识别的信息,由信息处理部分按照控制程序的规定,逐步存储并进行处理后,通过输出单元发出位置和速度指令给伺服系统和主运动控制部分。CNC系统的输入数据包括:零件的轮廓信息(起点、终点、直线、圆弧等)、加工速度及其他辅助加工信息(如换刀、变速、冷却液开关等),数据处理的目的是完成插补运算前的准备工作。数据处理程序还包括刀具半径补偿、速度计算及辅助功能的处理等。3)输出装置:输出装置与伺服机构相联。输出装置根据控制器的命令接受运算器的输出脉冲,并把它送到各坐标的伺服控制系统,经过功率放大,驱动伺服系统,从而控制机床按规定要求运动。 伺服与测量反馈系统 伺服系统是精工机床的重要组成部分,用于实现精工机床的进给伺服控制和主轴伺服控制。伺服系统的作用是把接受来自精工装置的指令信息,经功率放大、整形处理后,转换成机床执行部件的直线位移或角位移运动。由于伺服系统是精工机床的最后环节,其性能将直接影响精工机床的精度和速度等技术指标,因此,对精工机床的伺服驱动装置,要求具有良好的快速反应性能,准确而灵敏地跟踪精工装置发出的数字指令信号,并能忠实地执行来自精工装置的指令,提高系统的动态跟随特性和静态跟踪精度。伺服系统包括驱动装置和执行机构两大部分。驱动装置由主轴驱动单元、进给驱动单元和主轴伺服电动机、进给伺服电动机组成。步进电动机、直流伺服电动机和交流伺服电动机是常用的驱动装置。测量元件将精工机床各坐标轴的实际位移值检测出来并经反馈系统输入到机床的精工装置中,精工装置对反馈回来的实际位移值与指令值进行比较,并向伺服系统输出达到设定值所需的位移量指令。 精工机床辅助装置 辅助装置是保证充分发挥精工机床功能所必需的配套装置,常用的辅助装置包括:气动、液压装置,排屑装置,冷却、润滑装置,回转工作台和精工分度头,防护,照明等各种辅助装置。