海天精工机床有限公司 海天精工博客

加工中心输入数据不规范造成停机的处理方法 - 加工中心

一、精工加工中心输入数据不规范造成停机的主要原因在操作加工中心自动换刀功能出现故障的原因主要有:某个输入或输出信号不对,出现短路、断路,位置检测不到位,刀库乱刀,数刀计数器出错,继电器损坏;由于与之有联系的液压、气压系统,机械卡死、松脱等的影响。 二、精工加工中心输入数据不规范造成停机的处理方法1.查看系统参数号1320和1321(存储式行程检测)是正确的,说明软限位未改变。有关行程的参数也无异常。 2.精工加工中心有乱走刀、不换刀现象,怀疑位置环有问题。执行另一段G56与故障段G58基本相同的加工程序(即工件坐标系不同),发现机床加工一切正常。位置环损坏、机床参数发生改变或丢失的可能性排除。 3.怀疑机床数据处理中断或时序控制错误等,按下急停按钮,关断机床电源,重新启动机床,运行有问题的程序,情况依旧。 4.对照G56和G58的X、Y、A坐标值完全相同,唯有Z坐标有不同。是否G58不能够使用了呢?决定将该程序段中的G58改成G54,在G54上设定G58的坐标值,再执行修改的程序,机床运行正常。 5.由此判定,或是G58功能支持软件的宏程序发生错误,或是G58确认的坐标值没有被系统所认可(即NC给机床‘MT’的执行数据不同于设置的数据),而是记忆成为另外的数据,因为一旦运行程序其走刀的方向和位置都不对,显然后者是可能性较大。于是,将G58的X、Y、Z和A的坐标值重新设置为 “0”,按“REST”复位,再重新输入原来的坐标值,机床恢复了正常。 由此看出,该故障是由于不规范的输入数据,使面板给NC的数据发生错误引起的。采取清除数据、重新输入的方法,故障得以排除。

怎样处理加工中心废切削液 - 加工中心

废切削液处理的方法,一般有三种,包括:蒸发法、薄膜分离法和化学法。这三种方法同样适用于对于:乳化切削液、半合成切削液、全合成切削液的废液处理。它们各有其优缺点第一:蒸发法处理的优点就是过程简单、操作方面,处理的效果也很好,但是在能耗上消耗高,而且会产生一定对大气造成污染的化合物,如含量的化合物,所以一般不建议使用这种方法对切削液的废液金属处理。第二:化学法是一种最常用的方法,主要是包括利用无机盐分离和聚合物这两种处理的方法,而这两种方法操作起来也很方便,在量大或者是量少的情况下都使用,而且处理的成本低,所以大部分切削液使用厂家都喜欢选用这一种废液处理的方法。第三:薄膜分离的办法,主要是使用滤膜对切削液的废液进行处理,包括:逆向渗透、微孔过滤和超滤。大部分使用薄膜分离发的厂家都会选择加温到40摄氏度再进行超滤的处理。

加工中心季节保养 - 加工中心

做好机床维护才能使机床加工精度保持******状态,延长机器使用年限。注意事项:机器启动后,禁止维护机床。维护过程中,电路的断路器应断开。  加工精度维持: 1、开机后,必须先预热10分钟左右,然后再加工。长期不用的机器,应延长预热时间。2.检查油路是否畅通。3.光机前将工作台、鞍座置于机器中央位置(移动三轴行程至各轴行程中间位置)。4.机床保持干燥清洁。  保养检查: 1每日维护保养1、检查润滑油液面高度,保证机床润滑。建议使用T68#导轨润滑油。2.检查冷却液箱内冷却液是否足够,不够及时添加。3.检查气动三联件油液面高度,大约为整个油管高度的2/3即可。每天将气动三联件滤油罐内水汽由排水开关排出。4.检查空气压力,放松调整旋钮,依右旋增压,左旋减压原则调整压力,一般设定为5-7KG/CM2。压力开关通常设定为5KG/CM2,低于5KG/CM2时报警,系统出现“LOW URE PRESSURE”报警,压力升高后,报警信息消失。5、检查主轴内锥孔空气吹气是否正常,用干净棉布擦拭主轴内锥孔,并喷上轻质油。6、清洁刀库刀臂和刀具,尤其是刀爪。7、清洁暴露在外的清洁开关以及碰块。8、清洁工作台、机床内、三轴伸缩护罩上的切削及油污。9、检查全部信号灯,异警警示灯是否正常。10、检查油压单元管是否有渗漏现象。11、机床每日工作完成后进行清洁清扫工作。12、维持机器四周环境整洁。2每周保养1、清洁热交换器的空气滤网,冷却泵、润滑油泵滤网。2、检查刀具拉栓是否松动,刀把是否清洁。3、检查三轴机械原点是否偏移。4、检查刀库换刀臂动作或刀库刀盘回转是否顺畅。5、如有油冷机检查油冷机油,如低于刻度线请及时加注油冷油,推荐使用10#淀子油。6、检查油冷机设定温度,建议设定在26-28度之间。3每月保养检测X、Y、Z三轴轨道润滑情况,轨道面必须保证润滑良好。检查清洁极限开关以及碰块。3、检查打刀钢油杯油是否足够,不够及时添加。4、检查机器上的指示牌与警告铭牌是否清晰、存在。4半年保养1、拆开三轴防屑护罩,清洁三轴油管接头,滚珠导螺杆,三轴限位开关,并检测是否正常。检查各轴硬轨刮刷片效果是否良好。2、检查各轴伺服马达及头部是否正常运转,有无异常声音。3、更换油压单元油,刀库减速机构油。4、检测各轴间隙,必要时可调整补偿量。5、清洁电箱内灰尘(确保机床处于关闭状态下)。6、全面检查各接点、接头、插座、开关是否正常。7、检查调整机械水平。5年保养1、检查所有按键是否灵敏正常。2、清洗切削水箱,更换切削液。3、检查各轴垂直精度,决定是否需要调整。日常维护及修理注意:设备的维护及修理应由专业工程师进行。1、接地保护系统应有完好的连续性,确保人身安全。2、对断路器、接触器、单相或三相灭弧气等元气等元器件进行定期检查,如接线是否松动,噪音是否过大,找出原因并排除隐患。3、确保电柜内散热风机正常运行,否则可能会导致元气件损坏。4、保险丝熔断,空气开关频繁跳闸,应及时找出原因并排除。6伺服驱动电池更换 绝对制系统数据靠伺服驱动电池保持,当出现电池电压过低(警告9F)的情况时,驱动器电池需要更换,请尽快订购同型号的电池单元,并保持驱动器电源接通。请在更换电池的30分钟前开启驱动单元的电源。在1小时以内完成更换电池。电池的更换步骤 1、确认输入电源已切断,所更换的驱动单元的电源已OFF。2、拔出与驱动单元电池插口相连的电池插头。3、用指尖按下电池侧面,横推电池然后取出。4、新电池的插头与驱动单元电池插口相连。5、把电池安装到驱动单元上。

选择数控刀具(一) - 加工中心

选取精工刀具时,要使精工刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。在进行自由曲面(模具)加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了精工刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。 在加工中心上,各种精工刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(3种规格)和锥柄(4种规格)2种,共包括16种不同用途的刀柄。 在经济型精工机床的加工过程中,由于精工刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工步骤;③粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻;;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用精工机床的自动换刀功能,以提高生产效率等。

三菱系统开机参数设置 - 加工中心

在三菱CNC的硬件连接检查与设置执行完毕向系统送电后,显示器上的“READY”绿灯仍然不亮。而且在〔诊断〕――〔报警〕 画面上显示很多报警内容,让初次使用三菱CNC的调试工程师感到困惑。而且三菱CNC的参数多达700余种,哪些是开机时必须设置的呢?又如何解除故障报警呢?本文根据调试经验就上述问题作一说明,以期对调试工程师有所帮助。 1.开机参数 1.1 基本参数的设置  原装系统开机后显示的是日文,为操作方便,先设置参数#1043=22(简体中文)。(有些系统如C64没有简体中文规格,则设置#1043=15繁体中文)。  设置#1138=1 (随参数号选择参数)即输入参数号后,屏幕立即切换到该参数画面。  以下是开机后必须设置的参数: #1001――设定是单系统还是双系统以及 plc 轴 的有无。 #1002――设定NC轴及PLC轴的轴数。 #1013――设定各轴的名称。 #1037――G代码体系与补偿类型  (铣床: #1037=2, 车床#1037=3)  (该参数必须在执行#1060格式化前设置) #1060 ――该参数特别重要。其功能是“执行系统启动的初始化”  功能有2:其一是根据#1001——-#1043的设定值进行参数的初始化。其意义是在#1001——-#1043中已经设置了NC轴数和主轴数,在设置了#1060后,各伺服轴和主轴的参数自动显示在屏幕上。否则不调出各伺服轴和主轴的参数。  其二是对加工程序和刀具补偿数据进行格式化。而输入标准固定循环。  在准确的设置了#1001——-#1043参数后必须按提示设置#1060。#1155=100 #1156=100

三菱系统驱动器出现过电流报警的故障 - 加工中心

例01.驱动器出现过电流报警的故障维修故障现象:一台配套FANUC 11M系统的卧式加工中心,在加工时主轴运行突然停止,驱动器显示过电流报警。分析与处理过程:经查交流主轴驱动器主回路,发现再生制动回路、主回路的熔断器均熔断,经更换后机床恢复正常。但机床正常运行数天后,再次出现同样故障。 由于故障重复出现,证明该机床主轴系统存在问题,根据报警现象,分析可能存在的主要原因有:1)主轴驱动器控制板不良。2)电动机 连续过载。3)电动机绕组存在局部短路。在以上几点中,根据现场实际加工情况,电动机过载的原因可以排除。考虑到换上元器件后,驱动器可以正常工作数天,故主轴驱动器控制板不良的可能性亦较小。因此,故障原因可能性******的是电动机绕组存在局部短路。维修时仔细测量电动机绕组的各相电阻,发现U相对地绝缘电阻较小,证明该相存在局部对地短路。 拆开电动机检查发现,电动机内部绕组与引出线的连接处绝缘套已经老化;经重新连接后,对地电阻恢复正常。再次更换元器件后,机床恢复正常,故障不再出现。例02.主轴驱动器AL-12报警的维修故障现象:一台配套FANUC 11M系统的卧式加工中心, 在加工过程中,主轴运行突然停止,驱动器显示12号报警。分析与处理过程:交流主轴驱动器出现12号报警的含义是“直流母线过电流”,由本章前述可知,故障可能的原因如下:1)电动机输出端或电动机绕组局部短路。2)逆变功率晶体管不良。3)驱动器控制板故障。 根据以上原因,维修时进行了仔细检查。确认电动机输出端、电动机饶组无局部短路。然后断开驱动器(机床)电源,检查了逆变晶体管组件。通过打开驱动器,拆下电动机电枢线,用万用表 检查逆变晶体管组件的集电极(C1、C2)和发射极(E1、E2)、基极(B1、B2)之间,以及基极(B1、B2)和发射极(El、E2)之间的电阻值,与正常值(表7-25所示)比较,检查发现C1-E1之间短路,即晶体管组件己损坏。

主轴驱动器AL-01:主轴电动机过热报警。 - 加工中心

上述报警可以通过复位键清除,清除后系统能够起动,主轴无报警,但在正常执行各轴的手动参考点返回动作后,当Z轴向下移动时,又发生上述报警。 由于实际机床发生报警时,只是Z轴向下移动,主轴电动机并没有旋转,同时也不发热。考虑到主轴电动机是伴随着Z轴一起上下移动,据此可以大致判定故障是由于Z轴移动,引起主轴电动机电缆弯曲,产生接触不良所致。打开主轴电动机接线盒检查,发现接线盒内插头上的主轴电动机热敏电阻接线松动;重新连接后,故障排除,机床恢复正常。例306.主轴高速出现异常振动的故障维修故障现象:某配套FANUC 0TA2系统的精工车床,当主轴在高速(3000r/min以上)旋转时,机床出现异常振动。 分析与处理过程:精工机床的振动与机械系统的设计、安装、调整以及机械系统的固有频率、主轴驱动系统的固有频率等因素有关,其原因通常比较复杂。但在本机床上,由于故障前交流主轴驱动系统工作正常,可以在高速下旋转;且主轴在超过3000r/min时,在任意转速下振动均存在,可以排除机械共振的原因。检查机床机械传动系统的安装与连接,未发现异常,且在脱开主轴电动机与机床主轴的连接后,从控制面板上观察主轴转速、转矩显示,发现其值有较大的变化,因此初步判定故障在主轴驱动系统的电气部分。经仔细检查机床的主轴驱动系统连接,最终发现该机床的主轴驱动器的接地线连接不良,将接地线重新连接后,机床恢复正常。例307.主轴声音沉闷并出现过电流报警的故障维修 故障现象:一台配套FIDIA l2系统、FANUC l5型直流主轴驱动的精工仿型铣床,主轴在起动后,运转过程中声音沉闷;当主轴制动时,CRT显示“FEED HOLD”,主轴驱动装置的“过电流”报警指示灯亮。分析与处理过程:为了判别主轴过电流报警产生的原因,维修时首先脱开了主轴电动机与主轴间的联接,检查机械传动系统,未发现异常,因此排除了机械上的原因。 接着又测量、检查了电动机的绕组、对地电阻及电动机的连接情况,在对换向器及电刷进行检查时,发现部分电刷已到达使用极限,换向器表面有严重的烧熔痕迹。针对以上问题,维修时首先更换了同型号的电刷;并拆开电动机,对换向器的表面进行了修磨处理,完成了对电动机的维修。重新安装电动机后再进行试车,当时故障消失;但在第二天开机时,又再次出现上述故障,并且在机床通电约30min之后,故障就自动消失。根据以上现象,由于排除了机械传动系统、主轴电动机、连接方面的原因,故而可以判定故障原因在主轴驱动器上。 对照主轴伺服驱动系统的原理图,重点针对电流反馈环节的有关线路,进行了分析检查;对电路板中有可能虚焊的部位进行了重新焊接,对全部接插件进行了表面处理,但故障现象仍然不变。由于维修现场无驱动器备件,不可能进行驱动器的电路板互换处理,为了确定故障的大致部位,针对机床通电约30min后,故障可以自动消失这一特点,维修时采用局部升温的方法。通过吹风机在距电路板8~250px处,对电路板的每一部分进行了局部升温,结果发现当对触发线路升温后,主轴运转可以马上恢复正常。由此分析,初步判定故障部位在驱动器的触发线路上。通过示波器观察触发部分线路的输出波形,发现其中的一片集成电路在常温下无触发脉冲产生,引起整流回路U相的4只晶闸管(正组与反组各2只)的触发脉冲消失:更换此芯片后故障排除。维修完成后,进一步分析故障原因,在主轴驱动器工作时,三相全控桥整流主回路,有一相无触发脉冲,导致直流母线整流电压波形脉动变大,谐波分量提高,产生电动机换向困难,电动机运行声音沉闷。当主轴制动时,由于驱动器采用的是回馈制动,控制线路首先要关断正组的触发脉冲,并触发反组的晶闸管,使其逆变。逆变时同样由于缺一相触发脉冲,使能量不能及时回馈电网,因此电动机产生过流,驱动器产生过流报警,保护电路动作。例308~例311.主轴只有漂移转速的故障维修例308.故障现象:一台配套FANUC 7系统的精工铣床,主轴在自动或手动操作方式下,转速达不到指令转速,仅有1~2r/min,正、反转情况相同,系统无任何报警。分析与处理过程:由于本机床具有主轴换档功能,为了验证机械传动系统动作,维修时在MDI方式下进行了高、低换档动作试验,发现机床动作正常,说明机械传动系统的变速机构工作正常,排除了档位啮合产生的原因。检查主轴驱动器的电缆连接以及主轴驱动器上的状态指示灯,都处于正常工作状态,可以初步判定主轴驱动器工作正常。进一步测量主轴驱动器的指令电压输入VCMD,发现在任何S指令下,VCMD总是为“0”,即驱动器无转速指令输入。检查CNC控制柜,发现位置控制板上的主轴模拟输出的插头XN松动;重新安装后,机床恢复正常。例309.故障现象:一台配套FANUC ll系统的进口卧式加工中心,S指令无效,主轴转速仅为1~2r/min,无任何报警。分析与处理过程:测量主轴驱动器的速度指令PcMD信号,发现在O-4500r/min的任何S指令下,VCMD总是为0,进一步测量CNC的S模拟输出,其值亦为“0”,表明CNC的主轴速度控制指令未输出。 由于CNC无报警显示,故主轴速度控制指令未输出可能的原因是主轴未满足转速输出的条件。对照系统的接口信号,通过对PLC程序梯形图的分析发现:PLC程序中主轴高/低速换档的标志位、机床的高/低落速档检测开关输入信号均为“0”,这与实际情况不符。通过手动控制电磁阀,使机床换到低速档后,机床的低速档检测开关输入信号正确,PLC中主轴低速换档的标志位随之变为正确的状态,满足了主轴条件。在此条件下再次启动主轴,机床恢复正常。为了进一步判断机床故障的原因,通过MDI方式,执行M42(换高速档指令)后,发现M42指令不能完成。检查高速档电磁阀已经得电,但高速档到位信号为“0”,由此判定故障原因在机床的机械或液压部分。检查主轴箱内部,发现机床的换档机构的拨叉松动,在低速档时,由于拨叉向下动作,可以通过自重落下,因此机床可以正常工作;换高速档时,拨叉向上运动,拔出后不能插入齿轮。经重新安装后,机床恢复正常。 例310.故障现象:一台配套FANUC 0M的二手精工铣床,采用FANUC S系列主轴驱动器,开机后,不论输入S**M03或S**M04指令,主轴仅仅出现低速旋转,实际转速无法达到指令值。分析与处理过程:在精工机床上,主轴转速的控制,一般是精工系统根据不同的S代码,输出不同的主轴转速模拟量值,通过主轴驱动器实现主轴变速的。在本机床上,检查主轴驱动器无报警,且主轴出现低速旋转,可以基本确认主轴驱动器无故障。根据故障现象,为了确定故障部位,利用万用表测量系统的主轴模拟量输出,发现在不同的S**指令下,其值改变,由此确认精工系统工作正常。分析主轴驱动器的控制特点,主轴的旋转除需要模拟量输入外,作为最基本的输入信号还需要给定旋转方向。在确认主轴驱动器模拟量输入正确的前提下,进一步检查主轴转向信号,发现其输入模拟量的极性与主轴的转向输入信号不一致;交换模拟量极性后重新开机,故障排除,主轴可以正常旋转。例311.故障现象:一台配套FANUC 0T的二手精工车床,采用FANUC S系列主轴驱动器,开机后,不论输入S**M03或S**M04指令,主轴仅仅出现低速旋转,转速无法达到指令值。 分析与处理过程:由于主轴驱动器无报警显示,故故障分析过程同上例。在本机床上,经测量主轴模拟量输入、主轴转向信号输入正确,因此排除了系统不良、主轴输入模拟量的极性与主轴的转向输入信号不一致的可能性。 考虑到本机床为二手机床,机床的主轴出厂设定参数已经遗失,在主轴调试前已经进行了参数的初始化处理,因此主轴驱动器参数设定不当的可能性较大。#p#分页标题#e# 对照主轴驱动器的实际连接,检查主轴参数,发现该主轴中驱动器在未使用外部“主轴倍率”调整电位器的情况下,主轴驱动器参数上却设定了外部“主轴倍率”生效,因此主轴转速倍率被固定在“0”,引起了上述故障。 修改参数后,主轴工作恢复正常,故障排除。

卧式加工中心 - 加工中心

卧式加工中心是最常用的精工机床之一,其技术含量高,是精工机床产业发展水平的标志性产品之一。卧式加工中心主要通过精工系统、伺服驱动装置控制机床基本运动,其结构的主要特征是主轴水平设置,通常由3-5个运动部件(主轴箱、工作台、立柱或主轴套等)组成。在卧式加工中心上设置自动交换工作台,构成柔性制造单元(FMC),实现工件自动交换,即在加工的同时可进行另一个工件装卸。加工工件经一次装夹后,完成多工序自动加工,自动选择及更换刀具,自动改变机床主轴转速和进给速度,自动实现刀具与工件的运动轨迹变化以及自动实现其它辅助功能。卧式加工中心适用于零件形状比较复杂和精度要求高的产品的批量生产,特别是箱体和复杂结构件的加工。在汽车、航空航天、船舶和发电等行业被大量用于复杂零件的精密和高效加工。国产卧式加工中心的水平有很大提高,可以达到一般零件的高速、精密加工,基本上可以满足用户需求,但与国际先进水平相比,在精度、效率、智能化和可靠性等方面上尚有差距,因此,高档卧式加工中心进口量较大。工作原理工件在加工中心上经一次装夹后,数字控制系统能控制机床按不同加工工序,自动选择及更换刀具,自动改变机床主轴转速、进给速度和刀具相对工件的运动轨迹及其它辅助功能、 依次完成工件多个面上多工序的加工。并且有多种换刀或选刀功能,从而使生产效率大大提高。加工中心由于工序的集中和自动换刀,减少了工件的装夹、测量和机床调整等时间,使机床的切削时间达到机床开动时间的80%左右(普通机床仅为15~20%);同时也减少了工序之间的工件周转、搬运和存放时间,缩短了生产周期,具有明显的经济效果。加工中心适用于零件形状比较复杂、精度要求较高、产品更换频繁的中小批量生产。与立式加工中心相比较,卧式加工中心结构复杂,占地面积大,价格也较高,而且卧式加工中心在加工时不便观察,零件装夹和测量时不方便,但加工时排屑容易,对加工有利。 类型与特点卧式加工中心按立柱是否运动分为固定立柱型和移动立柱型。 (1)固定立柱型1)工作台十字运动,工作台作X、Z向运动,主轴箱作Y向运动,主轴箱在立柱上有正挂、侧挂两种形式。适用于中型复杂零件的镗、铣等多工序加工。2)主轴箱十字运动,主轴箱作X、Z向运动,工作台作Y向运动。适用于中小型零件的镗、铣等多工序加工。3)主轴箱侧挂与立柱,主轴箱作Y、Z向运动,这种布局形式与刨台型卧式铣镗床类似,工作台作X向运动。适用于中型零件镗、铣等多工序加工。(2)移动立柱型1)刨台型,床身呈T字形,工作台在前床身上作X向运动,立柱在后床身上作Z向运动。主轴箱在立柱上有正挂、侧挂两种形式,作Y向运动。适用于中、大型零件,特别是长度较大零件的镗、铣等多工序加工。2)立柱十字运动型,立柱作Z、U(与X向平行)行运动,主轴箱在立柱上作Y向运动,工作台在前床身上作X向运动。适用于中型复杂零件的镗、铣等多工序加工。3)主轴滑枕进给型,主轴箱在立柱上作Y向运动,主轴滑枕作Z向运动。立柱作X向运动。工作台是固定的,或装有回转工作台。可配备多个工作台,适用于中小型多个零件加工,工件装卸与切削时间可重合。选用要点1:规格其中包括加工空间的尺寸大小,主轴转速范围,进给速度范围,规范刀具的大小和范围,精工装置的能力和任选附件种类的多少等。2:性能其中包括静态精度、加工精度、移动精度、定位精度、热变形状况和抗振动性能等。3:其它其中包括与系统的适应性,维修保养是否方便,技术支持体制和安全性等。结构1.机电一体化布局,结构紧凑,造型美观 ,操作方便 ,采用先进的电子技术与机械装置实现******匹配,可靠性高,使用维修方便。使用进口台湾精工回转工作台。三坐标运动集中在机床后部的立柱上,2.采用柱动式结构.对前部工作台的限制要求很小,适合连机组成加工制造线;3.机床由底座、立柱、滑座、回转工作台、主轴箱体、主轴部件、刀库部件、主传动系统、进给传动系统、润滑系统、液压系统、气动系统、冷却系统和排屑系统等组成;4.机床的基础件底座、立柱、滑座、均为优质铸铁件.抗震性能良好。5.三个坐标方向导轨均采用高刚度滚动导轨.摩擦阻尼小,定位精度高、精度坚持性、稳定性好、各部件运动灵敏,机床整机动静态特性优良。减少了传动误差和反向间隙,由于对滚珠丝杠副进行了预拉伸,并选用支撑滚珠丝杠的专用轴承,使传动精度高,刚性高、定位精度高;6.进给驱动采用进口高性能交流(AC伺服电机,通过无隙联轴器与丝杠连接。7.主轴传动系统采用进口交流伺服主轴电机驱动.转速范围达60-6000rpm/min无级变速范围大,低速扭矩大,恒功率区宽,用S功能直接设定主轴转速,其转速增量达1转/分。因而可按刀具和工件材质选择******切削条件。8.采用进口台湾主轴。前、后轴承均采用SKF滚柱轴承支撑,提高了主轴刚性和稳定性,可以进行大扭矩强力切削;采用高性能油脂密封润滑,温升低,噪声小。主轴前端有气幕防护装置,以防止主轴轴承的污染;主轴精度高,距主轴端300mm处偏摆在0.008mm以内;9.夹持刀柄采用四瓣爪方式。夹刀可靠;采用进口的气压增压缸进行松刀,增压缸具有打刀吹气连动功能,可以在打刀到顶点时再做吹气,松刀的同时清洁主轴锥孔和刀柄;10.容量为30把刀的圆盘式刀库,由凸轮机构控制,通过机械手和立柱的移动实现换刀,换刀迅速、准确,动作稳定、可靠,换刀时间小于2秒,

  适应加工中心安装的条件 - 加工中心

一、适应加工中心安装条件 加工中心的位置应远离振源、应避免阳光直接照射和热辐射的影响,避免潮湿和气流的影响。如精工机床附近有振源,则加工中心 四周应设置防振沟。否则将直接影响精工机床的加工精度及稳定性,将使电子元件接触不良,发生故障, 影响加工中心的可靠性。  二.电源要求  一般加工中心安装在机加工车间,不仅环境温度变化大,使用条件差,而且各种机电设备多,致使电网波动大。因此,安装加工中心的位置,需要电源电压有严格控制。电源电压波动必须在允许范围内,并且保持相对稳定。否则会影响加工中心精工系统的正常工作。  三.温度条件  精工加工中心的环境温度低于30摄示度,相对温度小于80%。一般来说,精工电控箱内部设有排风扇或冷风机,以保持电子元件,特别是中央处理器工作温度恒定或温度差变化很小。过高的温度和湿度将导致控制系统元件寿命降低,并导致故障增多。温度和湿度的增高,灰尘增多会在集成电路板产生粘结,并导致短路。  四.按说明书的规定使用加工中心  用户在使用加工中心时,不允许随意改变控制系统内制造厂设定的参数。这些加工中心参数的设定直接关系到加工中心各部件动态特征。只有间隙补偿参数数值可根据实际情况予以调整。

三菱系统直角切成圆角,铣圆尺寸偏小 - 加工中心

三菱系统直角切成圆角,铣圆尺寸偏小 原因 --- 粗略定位引起的典型现象 对策 --- 采用 G61.1 模式, 8019 设 80 , 8021 设 0 走曲线(微小线段)时,机床振动,走直线不振动 原因 ---8020 设的太小,导致走微小线段时,要频繁加减速。 对策 ---8020 设大点,比如 30 #p#分页标题#e#